1,186 research outputs found

    Fourier Transforms of Lorentz Invariant Functions

    Full text link
    Fourier transforms of Lorentz invariant functions in Minkowski space, with support on both the timelike and the spacelike domains are performed by means of direct integration. The cases of 1+1 and 1+2 dimensions are worked out in detail, and the results for 1+n dimensions are given.Comment: 15 pages, 1 figur

    Hierarchy of the Selberg zeta functions

    Full text link
    We introduce a Selberg type zeta function of two variables which interpolates several higher Selberg zeta functions. The analytic continuation, the functional equation and the determinant expression of this function via the Laplacian on a Riemann surface are obtained.Comment: 14 page

    Univalent Foundations and the UniMath Library

    Get PDF
    We give a concise presentation of the Univalent Foundations of mathematics outlining the main ideas, followed by a discussion of the UniMath library of formalized mathematics implementing the ideas of the Univalent Foundations (section 1), and the challenges one faces in attempting to design a large-scale library of formalized mathematics (section 2). This leads us to a general discussion about the links between architecture and mathematics where a meeting of minds is revealed between architects and mathematicians (section 3). On the way our odyssey from the foundations to the "horizon" of mathematics will lead us to meet the mathematicians David Hilbert and Nicolas Bourbaki as well as the architect Christopher Alexander

    A Solution to the Graceful Exit Problem in Pre-Big Bang Cosmology

    Full text link
    We examine the string cosmology equations with a dilaton potential in the context of the Pre-Big Bang Scenario with the desired scale factor duality, and give a generic algorithm for obtaining solutions with appropriate evolutionary properties. This enables us to find pre-big bang type solutions with suitable dilaton behaviour that are regular at t=0t=0, thereby solving the graceful exit problem. However to avoid fine tuning of initial data, an `exotic' equation of state is needed that relates the fluid properties to the dilaton field. We discuss why such an equation of state should be required for reliable dilaton behaviour at late times.Comment: 16 pages LaTeX, 5 figures. To appear in Physical Review

    On graviton production in braneworld cosmology

    Full text link
    We study braneworlds in a five dimensional bulk, where cosmological expansion is mimicked by motion through AdS5_5. We show that the five dimensional graviton reduces to the four dimensional one in the late time approximation of such braneworlds. Inserting a fixed regulator brane far from the physical brane, we investigate quantum graviton production due to the motion of the brane. We show that the massive Kaluza-Klein modes decouple completely from the massless mode and they are not generated at all in the limit where the regulator brane position goes to infinity. In the low energy limit, the massless four dimensional graviton obeys the usual 4d equation and is therefore also not generated in a radiation-dominated universe.Comment: 9 pages, minor changes, references correcte

    Recursion relations and branching rules for simple Lie algebras

    Full text link
    The branching rules between simple Lie algebras and its regular (maximal) simple subalgebras are studied. Two types of recursion relations for anomalous relative multiplicities are obtained. One of them is proved to be the factorized version of the other. The factorization property is based on the existence of the set of weights Γ\Gamma specific for each injection. The structure of Γ\Gamma is easily deduced from the correspondence between the root systems of algebra and subalgebra. The recursion relations thus obtained give rise to simple and effective algorithm for branching rules. The details are exposed by performing the explicit decomposition procedure for A3⊕u(1)→B4A_{3} \oplus u(1) \to B_{4} injection.Comment: 15p.,LaTe

    Near-Horizon Geometry and the Entropy of a Minimally Coupled Scalar Field in the Schwarzschild Black Hole

    Full text link
    In this article, we will discuss a Lorentzian sector calculation of the entropy of a minimally coupled scalar field in the Schwarzschild black hole background using the brick wall model of 't Hooft. In the original article, the WKB approximation was used for the modes that are globally stationary. In a previous article, we found that the WKB quantization rule together with a proper counting of the states, leads to a new expression of the scalar field entropy which is not proportional to the area of the horizon. The expression of the entropy is logarithmically divergent in the brick wall cut-off parameter in contrast to an inverse power divergence obtained earlier. In this article, we will consider the entropy for a thin shell of matter field of a given thickness surrounding the black hole horizon. The thickness is chosen to be large compared with the Planck length and is of the order of the atomic scale. When expressed in terms of a covariant cut-off parameter, the entropy of a thin shell of matter field of a given thickness and surrounding the horizon in the Schwarzschild black hole background is given by an expression proportional to the area of the black hole horizon. This leading order divergent term in the cut-off parameter remains to be logarithmically divergent. The logarithmic divergence is expected from the nature of the solution in the near-horizon region. We will find that these discussions are significant in the context of the continuation to the Euclidean sector and the corresponding regularization schemes used to evaluate the thermodynamical properties of matter fields in curved spaces. These are related with the geometric aspects of curved spaces. The above discussions are also important in presence of cosmological event horizon.Comment: 15 pages, A few discussions are added in Section:III, Published in J.Phys.Soc.Japan, A brief version of Section:II was separately published in Nucl.Phys.B [Nucl. Phys. B 814, 212 (2009)

    Tachyonic perturbations in AdS5_5 orbifolds

    Full text link
    We show that scalar as well as vector and tensor metric perturbations in the Randall-Sundrum II braneworld allow normalizable tachyonic modes, i.e., possible instabilities. These instabilities require nonvanishing initial anisotropic stresses on the brane. We show with a specific example that within the Randall-Sundrum II model, even though the tachyonic modes are excited, no instability develops. We argue, however, that in the cosmological context instabilities might in principle be present. We conjecture that the tachyonic modes are due to the singularity of the orbifold construction. We illustrate this with a simple but explicit toy model.Comment: 11 pages, matches published versio
    • …
    corecore